Gauss Quadrature Approximations to Hypergeometric and Confluent Hypergeometric Functions

نویسنده

  • WALTER GAUTSCHI
چکیده

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new integral solution of the hypergeometric equation

In this work we derive a new integral of the hypergeometric differential equation, valid for arbitrary parameters α, β, γ and which is expressed in terms of indefinite integrals. This leads to new types of relations between F (α, β, γ;x) and its contiguous functions : F (α, β, γ;x) can be related to only one of the functions contiguous to it.These equations enable one to extend the formulae giv...

متن کامل

Matrix-variate Gauss Hypergeometric Distribution

In this paper, we propose a matrix-variate generalization of the Gauss hypergeometric distribution and study several of its properties. We also derive probability density functions of the product of two independent random matrices when one of them is Gauss hypergeometric. These densities are expressed in terms of Appell’s first hypergeometric function F1 and Humbert’s confluent hypergeometric f...

متن کامل

Turán type inequalities for q-hypergeometric functions

In this paper our aim is to deduce some Turán type inequalities for q-hypergeometric and q-confluent hypergeometric functions. In order to obtain the main results we apply the methods developed in the case of classical Kummer and Gauss hypergeometric functions. c ⃝ 2013 Elsevier Inc. All rights reserved.

متن کامل

Log-convexity and log-concavity of hypergeometric-like functions

We find sufficient conditions for log-convexity and log-concavity for the functions of the forms a 7→ ∑ fk(a)kx , a 7→ ∑ fkΓ(a + k)x k and a 7→ ∑ fkx k/(a)k. The most useful examples of such functions are generalized hypergeometric functions. In particular, we generalize the Turán inequality for the confluent hypergeometric function recently proved by Barnard, Gordy and Richards and log-convexi...

متن کامل

Circular beams.

A very general beam solution of the paraxial wave equation in circular cylindrical coordinates is presented. We call such a field a circular beam (CiB). The complex amplitude of the CiB is described by either the Whittaker functions or the confluent hypergeometric functions and is characterized by three parameters that are complex in the most general situation. The propagation through complex A...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007